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Velocity and temperature profiles in adverse pressure 
gradient turbulent boundary layers 

By A. E. PERRY, J. B. BELL AND P. N. JOUBERT 
Department of Mechanical Engineering, University of Melbourne 

(Received 27 September 1965) 

A correlation scheme for velocity and temperature profiles is derived for turbu- 
lent boundary layers in adverse pressure gradients. The resulting analytical 
expressions are obtained by what could be referred to as ‘regional similarity ’ 
arguments. This avoids the need to make use of the Reynolds analogy (explicitly, 
a t  least) or the usual local gradient-type diffusion expressions for momentum 
and thermal transport (‘the local similarity’ and Boussinesq concept). The 
expressions agree well with experimental data for the velocity profiles and en- 
couraging correlation is shown for the temperature profiles. The expressions 
cover a wider part of the profile than given by the logarithmic law of the wall. 
Surface roughness and Prandtl-number effects are included in the analysis. 

1. Introduction 
The local Stanton number along the surface of a hot or cold body of arbitrary 

shape with an attached turbulent boundary layer is determined by a solution 
of themean thermal transport equation. This requires the velocity field (boundary 
layer and local skin-friction coefficients) to be known. Also some relationship 
between the temperature field (the thermal boundary layer) and velocity field 
is needed. The eddy viscosity distribution is known (since the velocity field is 
assumed to be known) and from this a corresponding thermal diffusivity co- 
efficient is calculated. This is usually done using a form of the Reynolds analogy 
where the two transport coefficients are taken to be equal or else proportional to  
one another. This is essentially the basis of the Spalding analysis (Spalding 
1961) which is now being widely applied. 

Although the above methods of analysis are traditional, the concepts involved 
are quite often seriously questioned in the literature. In  recent work by Rotta 
(1964) a more complex relationship between the two transport coefficients had 
to be used for correlating the velocity and temperature profiles in the outer 
regions of the boundary layer. Also, in a rather comprehensive review of the 
problem by Kestin & Richardson (1963) it  is indicated that the concept of the 
various forms of the Reynolds analogy is still open to question. 

Aside from the assumptions involved, the Spalding analysis is mathematically 
exact and appears adequate for many flow cases such as those with zero and 
favourable pressure gradients. However, i t  uses a simplified expression for the 
velocity field (a ‘law of the wall’ for the whole boundary-layer thickness) 
which makes it inapplicable to boundary layers in adverse pressure gradients. 
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Also the analysis cannot be used if predictions of skin friction cannot be made. 
Present methods for doing this .are unreliable. 

It can be seen that the state of knowledge of turbulent boundary-layer 
convection is rather incomplete and this is even more so for the adverse-pressure- 
gradient case. 

This paper covers work which is aimed a t  the following: 
(a)  To attempt to find an expression for velocity profiles in turbulent boundary 

layers in adverse pressure gradients by similarity arguments rather than being 
committed to postulating a detailed model for the mechanism of turbulence. 
Such a model is exemplified by the Prandtl mixing-length hypothesis or the 
various other eddy viscosity models. It is hoped that the correlations obtained 
will lead the way to more reliable predictions of local skin-friction coefficients. 

(b) To obtain expressions for the corresponding temperature profiles without 
having to rely on the dubious Reynolds analogy and thermal diffusivity concepts. 

Because of the lack of any reliable detailed knowledge of the turbulent process, 
the appeal of physical arguments in similarity analyses is a rather subjective 
matter. For this reason the authors prefer to regard what follows as merely a 
tentative empirical description of the behaviour of the turbulent boundary 
layer. The assumed behaviour will be stated and certain analytical deductions 
will be made. The correctness of the description will be left entirely to present 
and future experimental verification. Some physical inferences about the results 
could be made, but these will not be used for supporting the analysis. 

As with Millikan’s work (Millikan 1938), the formal nature of the analysis has 
involved ‘ some sacrifice in the attention paid to the fundamental, elementary 
physical processes occurring ’.t However, it is hoped that the analysis developed 
here will form an acceptable framework to which other more detailed theoretical 
and experimental investigations can be fitted. 

Experimental data from a variety of sources appear to confirm the correlation 
scheme obtained in (a),  and some recent experiments carried out a t  the University 
of Melbourne show encouraging results for part (b). 

Parts of the velocity field analysis have been done elsewhere, and the various 
sources are indicated at the end of the analysis. 

2. Analysis of velocity field 
Assumptions 

A turbulent boundary layer may be divided into a number of distinct regions 
when it develops over a surface along which the static pressure is rising. These 
regions are shown in figure 1. 

Two major regions are the ‘historical region’ and ‘wall region. ’ In  the wall 
region, only the local variables govern the mean velocity profile. Such variables 
are shown in the following equation. 

where U = mean velocity, T,, = local waIl shear stress, 01 = local kinematic 
pressure gradient ( = (l/p) dpldx, wherep is the static pressure), p = fluid density, 
v = kinematic viscosity, y = distance from the wall. 

t Quoting Millikan. 

u = f ( T o , 4 P ,  V , Y ) ,  (1) 
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Higher derivatives of 70 and a may be involved but the above equation will 

In  the historical region, upstream events have an influence on the mean 

In the wall region, the following three subregions will be assumed to exist 

be regarded valid for a wall region restricted to  sufficiently small values of y .  

velocity profile. 

(see figure 1). 

Wall region 

FIGURE 1. Postulated regions in an adverse pressure gradient 
turbulent boundary layer. 

Region I 
For sufficiently small values of y, a can be excluded from the analysis. 

Region II 

of v. However, y is not sufficiently large for a to have an influence. 

Region 111 
For sufficiently large values of y ,  mean relative motions are independent of v 

and also of the wall shear stress T ~ ,  provided the boundary layer has developed 
sufficient1y.t This possibility will be allowed for in the analysis, even though 
the local shear stress 7 at a point in region I11 may still be of the same order as 70. 

For sufficiently large values of y ,  mean relative motions will be independent 

Analytical deductions 

These assumptions lead to the following. 

where U, = (70fp)4, and is the shear velocity. 
For region 11, the familiar logarithmic law of the wall is obtained, vie. 

where K and A are universal constants. 

t This has been used by the authors for the want of a more specific criterion. 

(3) 
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For region I11 , the assumptionp stated earlier imply that gradients of velocity 
are given by aU/ay = f l (a ,  p and y alone), 

since these are the only wall variables left when ro and v are eliminated. 
Dimensional analysis yields 

where K' is a universal constant. 

aulay = K'&-*, 

u = K("Y)++ AU,, 
Integration gives 

where K is equal to  2K' and AUlis a function of integration which is independent 
of y. However, from equation (1) absolute velocities must in general be dependent 
on all of the wall variables, i.e. 

U "Y u: 

From this equation and the two previous ones i t  can be seen that the velocity 
must be given by 

This will be referred to as the 'half power law ' and AU,/U, will be referred to as 
the 'slip function' and represents the non-dimensional velocity of slip at the wall 
if this equation is extrapolated to the wall. 

Equations (3) and (4) apply to regions which are separated by a blending 
region of unknown width. If each of these equations is extrapolated into this 
blending region, the location yc, of their point of intersection$ cannot depend 
on v if consistency about the relative motions in regions I1 and I11 is to be main- 
tained. 

Dimensional analysis leads to 
Yc =NU;/",  (5) 

where N is a universal constant. The locus of yc is shown as line AB in figure 1. 
The line CD represents the outer edge of the viscous region where y = yb and 

Yb = ( 6 )  

where M is a universal constant by dimensional analysis. 
Provided yc does not come too close to the value yb, that is, provided q / a v  

is sufficiently large, a logarithmic region will exist. Substituting equation ( 5 )  
into equation (3), the velocity U, at the point of intersection of the extrapolated 
logarithmic and half power laws is given as 

Throughout this paper, brackets after AUJU,, AU,lU, etc., denote a functional de- 
pendence. 

$ These equations may not intersect in the blending region, in fact, they may not inter- 
sect at all. However, the end result of a modified analysis is the same as given here, but the 
derivation is more lengthy. 
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If, on the other hand, equation ( 5 )  is substituted into equation (4), U, is given as 

V,/U, = K(N)*+ (AUJQ). 

From these two above equations it can be seen that 

and by regrouping the constants this may be written as 

where E is a universal constant. 
This may also be written as 

where 

(7) 

A is as in equation (3) and C is a universal constant. L, has the dimensions of 
length and Le/C is the distance from the wall at which the stress ratio (7 - 70)/70 
is unity. However this is true only if the mean-flow inertia forces can be 
neglected. 

As the parameter U,"/av approaches zero, the logarithmic law completely dis- 
appears and it can be shown from dimensional reasoning that for diminishing 
significance of U,, 

!!!?l=G u, (:;I-+, -2 (9) 

where G is a universal constant. 
If surface roughness is included in the problem, assuming that relative motions 

outside a modified boundary region I are independent of the roughness scale 
and v, then dimensional reasoning gives: 

Region I I  

where AUJU, is the roughness function and k, is the equivalent roughness scale, 
defined in equation (12) (see Perry & Joubert 1963). 

Region I I I  

However, in this case AUJU, must be given by equation (S), that is, a logarithmic 
region of velocity profile must exist otherwise the effect of the parameters 
U:/av and keUJv cannot be separated in the way shown in equation (11) by 
dimensional reasoning alone. 

If the flow is completely rough, v is not involved in any region and so from 
equation (10) 
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where A is as in equation (3) by definition of k,. For this completely rough flow, 

( 1 2 4  
equation (1 1) becomes 

- = K  - +-ln-. u, 6) K k, 

Again this is valid only so long as a logarithmic region exists, that is, provided 
this time y,/ke is sufficiently large. From dimensional considerations the thickness 
of the boundary region for a given geometrical configuration of roughness is now 
proportional to ke. 

Equation (3) is the result arrived at by Millikan (1938) and Rotta (1962) who 
used similar reasoning to that used here. 

Equations (10) and (12) were arrived at by Hama (1954) and Clauser (1954, 
1956). A special form of the half-power law and equation (9) were deduced in a 
paper by Stratford (1 959) for a layer with continually zero wall shear stress. 

The form of equations (4) and (8) (the half power equation) were essentially 
arrived at by Townsend (1961) from energy considerations and structural simi- 
larity arguments. This led to  the conclusion that an eddy-viscosity concept 
could be used in regions close to the wall (equilibrium layers) and that the mean 
relative motions of the fluid a t  a point are governed by the local shear stress at 
that point. Mean-flow inertia forces were assumed to be small, giving a linear 
stress layer. This resulted in an equation applicable to regions I1 and I11 which 
is asymptotic to the logarithmic law at low valuesof ay/U:, and asymptotic 
to the half-power law at fairly large values of ay/U,2. 

U + 1 L, 

This equation is 

2(1-B.) 2(1-B) 4 
- V,  u 1  = K - l n r X {  va : (1 1 + + (ay/U,)}4 (ay/U,"))*+ - 1 1 ] + A - - - -  K +--(I+%) K 

9 

where B is a diffusion coefficient associated with the spread of turbulent energy 
due to turbulent diffusive movements and by working against turbulent pressure 
gradients. 

In  the authors analysis, fewer assumptions are made and the resulting logarith- 
mic law and half-power law need not necessarily be separated by a large blending 
region as is given in the Townsend equation. 

3. Analysis of velocity profile data 
The correlation scheme which has been derived here was used for examining 

the two-dimensional adverse pressure gradient flow data of Schubauer & Kleban- 
off (1950), Perry & Joubert (1963) who used a rough wall, and some recent 
measurements by the authors. Also the experimental results of Johnston (1957, 
1960) were examined. He measured the behaviour of a turbulent boundary layer 
which was yawed symmetrically as it approached the end wall of a tee section in a 
rectangular duct, and the 'plane of symmetry' profiles are examined here. 
This is shown diagrammatically in figure 6. 

Figure 2 shows how the two-dimensional flow velocity profiles correlate 
according to equations (10) and (11). A half-power scale has been used for the 
abscissa, giving a linear region for the half-power law. 
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The Schubauer & Klebanoff profile used in figure 2 was at x = 22-5 ft. This was 
one of the profles which showed an appreciable logarithmic region, and the 
wall shear stress was determined using a Clauser chart (see Clauser 1954). All 
other profiles in this paper were examined in a similar way. 

30 

25 

20 

$Ibhl5 + 
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I 

ation (lo), extrapolated 
5 

0 

(hdf-power scale) 
u: 

FIGURE 2. Correlations of velocity profiles. 0, Perry & Joubert (rough wal1,Profile I11 0); 
x , Schubauer & Klebanoff (smooth wall); E 2 1, E 6 a, authors (smooth wall). 

Figure 3 shows the corresponding slip functions for the profiles given in figure 2, 
and figure 4 shows the correlation of the roughness function with equation (12) 
for the rough-wall profiles of Perry & Joubert and those of other sources. Also 
shown is the roughness geometry. 

It can be seen that all experimental data appear to correlate quite well and 
the numerical values for the constants used are 

K = 0.40, A = 5.1, C = 0.19 and K = 4.16. 

For this work the values of only C and K were adjustable. The values of K 

and A have been well established elsewhere. 
One encouraging point about the above correlation is the possibility that the 

mean flow inertia forces do not affect the result provided the boundary layer 
20 Fluid Mech. 25 
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method of plotting the profiles has been used, and it can be seen that the velocity 
in the region of half-power correlation is quite large for some profiles, implying 
appreciable inertia forces. 

The mean flow inertia forces present in the Perry & Joubert profiles were 
calculated with the aid of a plot of the wall streamlines. If these inertia forces 
are zero, the ratio (a.r/ify)/pcr should equal unity. This ratio is shown plotted 
in figure 7 for the last downstream profile. The velocity profile is also shown in 
this figure on a half-power plot. The major contribution to the inertia forces 
came from the acceleration term UaUlax, while VaU/ay  was two orders of 
magnitude lower, ( V  is the component of velocity normal to the wall). 

t The values of skin friction 5.6(+C;)* of Perry & Joubert (1963) shown in table 1 of that 
article are quoted incorrectly for profiles I11 5 and I11 6 .  The values should be interchanged. 
C; actually varied monotonically with II: as seen by the abscissae of figures 9 and 13 of the 
same article. 
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For the range of 0 < yfS < t, a formula of the following form appeared ade- 
quate for the profiles examined 

La is a length scale associated with the mean flow accelerations and for the last 
downstream profile La M 1.38 ft. 

?LUT 
- (logarithmic scale) 
V 

FIGURE 4(a). Roughness function. Numbers indicate distance in ft., from leading edge 
of plate. A, Rand, flume; 0, Moore, boundary layer with zero pressure gradient. Perry & 
Joubert, boundary layer with pressure gradient: W, I1 series; 0,  I11 series; 0, I1 1-1-5ft. 
of plate unroughened at leading edge. (b)  Roughness geometry applicable to figure 4 (a).  

The philosophy adopted by the authors in the similarity analysis is somewhat 
similar to that of Coles (1955) who assumed that the profile UlU. = f ( yUJv)  
retained its universality irrespective of the state of balance of momentum given 
by the mean flow equations. The momentum equation was regarded to be irrele- 
vant in determining the profile close to the wall (when the above similarity 
parameters are used) but was of importance in determining the distribution of 
wall shear stress and boundary-layer development. From this and the continuity 

20-2 
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equation he deduced his streamline hypothesis and arrived at an expression for 
the distribution of shear stress within the 'law of the wall ' This is given as 

r ay 1' dU, gu71v U yU, 
T O  _ -  - 1+-+-- U: lJ: dx I0 (q) '(T)' 

For some of the tests carried out by the authors, the shear stress ratio given by the 
above equation was approximately 2 at the outer edge of the logarithmic layer 
as compared with 2-4 if the mean flow inertia forces are neglected. The above 
equation is not applicable in the half-power region. 

25 
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Equation (10) 
K = 040 

Equation ( 
K=416 

I I I 1 1 1 1  I I h I I I I I I I I l l  
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(half-power scale) 
UZ 

FIGURE 5. Development of a rough-wall boundary layer in an adverse pressure gradient. 
Profiles of Perry & Joubert (1963): 

Distance xft. Distance x ft. 
from leading from leading 

Profile edge Profile edge 

6 1111 3 x 1114 9 
0 1112 5 v 1115 12 
f 1113 7 I116 17 



Adverse pressure gradient turbulent boundary layers 309 

The value of K used by the authors agrees with the value used by Townsend 
(1961) and Stratford (1959). Townsend took into account the value of the mean 
flow inertia forces of Schubauer & Klebanoff and assumed that their effect was 

0 1 2 3 

y inches (half-power scale) 

FIGWFZE 6. Plane of symmetry profiles of Johnston (1957, 1960). 77, is the local free-stream 
velocity. In order from the top down: 

u;/av 
D 8  a3 

D4 79.3 
D x 6  47.5 
D x 5  21.6 
D 3  8.67 

to give a constant value of ( h / a y ) / p a  somewhat less than unity for a given pro- 
fde. The accelerations were calculated to  be approximately one-third of the 
kinematic pressure gradient and the resulting value of (l /p) (h/i3y) was used 
instead of M: in an equation of the form given by equation (4), since this is what the 
local similarity theory demanded. This agreed well with the slopes of the Schu- 



310 A.  E .  Perry, J .  B. Bell and P. N .  Joubert 

I I I 1 1 I I I I I I I  

0 7  
0 

0 I 

1 a7 

&/Gay 0 

0.8 - ‘\ 0 I 

07 - \ I 

\ 
\ 0 

- gI20.6 - 
-18. 
a 
c 0 5 -  I 43, 

Equation (II), 
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bauer & Klebanoff profiles on a half-power plot. The intercepts, and hence the 
slip functions, were not checked, sinoe for most profiles the values of wall shear 
stress were unreliable. These slopes are shown dotted in figure 8. The authors 
have calculated the slopes, ignoring the effect of mean flow accelerations and 
these are shown heavy. Both sets of lines appear to fit the data satisfactorily 

0.4 t A 

y in. (half-power scale) 

FIGURE 7. Variation of local shear stress for last downstream profile (Perry & 
Joubert 1963, rough wall). 

provided the lines are positioned appropriately. Therefore it is possible that 
the inertia forces do not have an appreciable effect. 

The comparison of the correlation with Townsend’s theory shows a marked 
difference when the intercepts are considered. The local similarity theory of 
Townsend gives a relationship between the constants K and C which prevents 
the theory from fitting the data satisfactorily. The mechanism chosen appears 
to be too restrictive and only one adjustable constant appears. This constant 
is a diffusion constant B. Figure 9 shows a family of curves corresponding to 
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Townsend’s equation for different values of B and these are compared with the 
authors’ proposed equations. 

With what appears to be the correct value of K( = 4-16), the Townsend asymp- 
tote to the half-power law has a slip function with C = 0.8 and the corresponding 
value of B is 0-145. The authors have used C = 0.19 and the comparison can be 

0.6 

0.4 
5 

1 2 

y) (in.)) 

FIUURE 8. Velocity profiles of Schubauer & Klebanoff (1950). Profiles from the top to bottom 
are at z = 22, 23, 24, 24.5, 25 and 254ft. respectively. Reynolds number = 1O6ft.-I. 
Dashed lines represent Townsend’s calculations. Heavy lines represent authors’ calculations 
with inertia forces neglected. 

seen in figure 3. As the value of B is increased, the resulting slip function comes 
closer to the experimental results but the value of K is decreased. This can be 
seen in figure 9. 

This reduced value of K definitely disagrees with the slopes of the ‘near to 
separation’ profiles of Schubauer & Klebanoff or those of Johnston (e.g. see 
figure 6). The authors have tested this point with Stratford’s profiles. However, 
the profiles when plotted in the form used by the authors, are too scattered to be 
conclusive. 

Cornparedwith other analyses,€ewer commitments about the nature of the flow 
processes have been made in this paper and this means that one more disposable 
constant is available which enables the data to be correlated more easily. Hence 
the authors wish to  emphasize that the validity of the half-power-expression 
derived here must rest heavily on experimental justification over a wide range of 
observations. This is also true of the logarithmic law deduced by Millikan, since 
this law, like the half-power expression, has two disposable constants. 
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FIGURE 9. Comparison of Townsend’s theory with authors’ proposed equations. Townsend’s 
theory is shown for various values of the diffusion coefficient B. The range of experimental 
scatter is shown and the range of ay/CJ: for various sources is indicated by the vertical 
wavy lines. Townsend’s equation with B = 0.27 is within the experimental scatter for 
fairly large ay/U:. However, when individual profiles are considered, the trends of results 
do not agree (e.g. see figure 6). 

4. Physical implications 
The above results cast some doubts on the assumption that momentum 

transport depends on the local gradient-type diffusion mechanism generally 
used, since this requires a large blending region between the logarithmic and half- 
power region. With the numerical constants used by the authors, it  is found that 
the half-power law joins onto the logarithmic law almost tangentially without 
any obvious blending region. This occurs at a value of ay/U: = 1.41. 

It appears that the local kinematic pressure gradient does not distort the 
logarithmic profile but simply controls its range of application of y for a given 
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wall shear velocity. It is as if the flow is dominated by one effect at a time, these 
effects occurring in regions. 

In  the local similarity theory, as opposed to what could be termed the ‘regional 
similarity hypothesis ’, the local velocity gradients are influenced by the local 
shear stress which for zero mean flow inertia forces is given by 

7- 7 0  - = -+ay. 
P P  

As a y  becomes large, r0/p can be seen to become unimportant, this giving the 
half-power law. However, the experimental data appear to give half-power 
laws when a y  is only 1.41 times the value of T ~ / P .  The local similarity theory also 
implies that a half-power law is applicable only to layers close to separation. 
It has been shown here that the range of application is probably wider. 

5. Criterion for the existence of a logarithmic velocity distribution 
Taking the outer edge of region I as being yUJv = 30 and the connexion 

between the regions I1 and I11 occurring at ay/UF = 1.41, then so long as U:/av 
is larger than 20, a logarithmic law should exist (compare with Townsend who 
used U;/av % 20). The last downstream profile of Johnston has a value of U:/av 
of about 8 .7 t  (see figure 6) and no sensible logarithmic region exists. The slip 
function is therefore not given by equation (8). However, the slope of the half- 
power region of the profile agrees quite well with the value of 4.16 for K .  

6. Analysis of temperature profiles 
Assumptions 

Close to the wall there will be a region where only the wall variables govern 
the flow and heat transfer. That is, the difference 8 in wall and fluid mean tem- 

where cp is the specific heat of the fluid, k is the thermal conductivity, and qo 
is the wall heat flux. 

Flow will be considered to be incompressible and the fluid-property variations 
small. Also the amount of heat being conveyed from the wall will be considered 
large compared with the heat produced by viscous dissipation (i.e. low Eckert 
number). Therefore five fundamental quantities may be used in the dimensional 
analysis. As far as the effects of ro and a are concerned, three regions similar to 
those considered earlier for the relative motions will be assumed applicable here 
for the relative temperatures. However, the ranges occupied by these regions 
need not necessarily be the same as those of the velocity profiles. In  order to 
make analytical deductions of the type given earlier for the velocity profiles 
and still retain the possible effect of Prandtl number in the fully turbulent part 
of the flow outside the boundary region I, it is necessary to assume that the 
relative temperatures N/&J are independent of the length scales associated 
with this boundary region. Such length scales are v/U, (proportional to the thick- 

? The value of 70/p was guessed for this case by noting the position of the points close t o  
the wall on a Clauser chart. 
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ness of the viscous sublayer) and k/pc, U,. (proportional to the thickness of the 
thermal conduction sublayer). The relative temperatures must also be inde- 
pendent of TC,, the surface roughness scale. 

Analytical deductions 
The resulting equations are: 

Region I 

where 0, is the friction temperature equal to p,,/(pcpU7) and u is the Prandtl 
number. 

The quantities KH, KH and A, are analogous to the universal constants K ,  

K and A used in the description of the velocity profiles. However, the analysis 
shows that it is possible for these former quantities to be functions of Prandtl 
number. The usual theories of thermal transport, such as the various modified 
Reynolds analogies, arrive at a form similar to equation (14) with these various 
terms being functions of Prandtl number. However, K~ is given as a function of 
Prandtl number only if the concept of a uniform turbulent Prandtl number is 
used in these theories. Also the shear stress and heat flux must be assumed to 
be invariant with y to arrive a t  the form of (14), whereas it is not necessary to 
make these assumptions here. 

The functions A0,/0, and AO,/Br are somewhat analogous to the velocity slip 
and roughness functions. From similar reasoning to that used for the velocity 
distributions, the form of equation (15) is valid for the rough wall caset only so 
long as there is a logarithmic distribution of temperature present, and it can be 
deduced that 

As U$lav approaches zero, the effect of U, disappears, and this requires 

provided surface-roughness effects are small. GH is analogous to Gin the velocity- 
profile equations. 

7. Analysis of temperature profile data and description of experiment 
The form of equation (14) has been verified experimentally to some extent by 

Reynolds, Kays & Kline (1958), who measured the temperature profiles in a 
zero pressure gradient turbulent boundary layer. The wall was smooth and was 

t For smooth walls, the form of equation (15) should be valid irrespective of whether a 
1 ogarithmic temperature region exists. 
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heated to a uniform temperature. Figure 10 shows these results. It can be seen 
that a ' thermal law of the wall ' exists for zero pressure gradients and some part 
of the profile could be interpreted to be logarithmic. 

The authors' experimental conditions and apparatus were similar to those of 
Reynolds, Kays & Kline, except that pressure gradient effects were included. 
The plate was flat and smooth and held a t  a uniform temperature. Also, as in the 

25 c 
20 

Qb 
2 15 

10 

5 

- 
A possibility for equation (14), - K/z(c) = 0.50 

- 
of Reynolds analogy 

- 

I I I 

- 
A possibility for equation (14), - K/z(c) = 0.50 

- 
of Reynolds analogy 

- 

I I I 

1 10 102 103 
yCJ,/v (logarithmic scale) 

FIGURE 10. Temperature profiles of Reynolds, Kay5 & Kline (1958). 
Re, goes from 0.729 x lo6 to 2.78 x lo6. 

Reynolds, Kays & Kline tests, no appreciable unheated starting length existed. 
The fluid used was air, giving a Prandtl number CT = 0-71. The maximum tem- 
perature difference between the plate and the free stream was 20°C, giving 
only small variations in fluid properties. All fluid properties were evaluated at 
the mean viscous-zone temperature. The Eckert number was negligibly low. 

Stanton numbers were measured by isolated electric heating strips. The plate 
was heated by low-pressure steam. Reproducibility of Stanton number was poor 
( 7 yo), and so an ensemble average was used from many repetitions of the 
measuring procedure. Also, faired-in curves of Stanton number plotted against 
many Reynolds-number values were used for each measuring station along the 
plate. Cursory checks were made using thermal integral methods. A detailed 
description of the apparatus and the correlation of experimental results of 
other flow cases is under preparation by the authors. 

The profiles from this experiment have been plotted in the same way as those 
of Reynolds, Kay & Kline and are shown in figure 11. It can be seen that a thermal 
law of the wall, using the similarity parameters Ole, and yUJv, does not appear 
valid for all cases, except perhaps well within the viscous zone of the flow. Most 
profiles were measured only at two stations along the plate for a series of 
Reynolds numbers and pressure distributions. 

A typical zero-pressure-gradient profile measured by the authors (No. 9) is 
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compared with a typical one of Reynolds, Kays & Kline, and close agreement can 
be seen. However, considerable departure from these occurs for some of the 
pressure-gradient profiles. The lower profiles labelled E 1 to E 9 were measured 
at a station furthermost from the leading edge (station 1). The pressure-gradient 

1 I I 1 1 1 1 1 1  I 1 I I I I I l l  I 

o n  

1 I I 1 I I I l l  I I I I I 1 1 1 1  I I I I  
10 2 5 1 0 2  2 5 l o3  2 5 

y UJv  (logarithmic scale) 

FIGURE 11. Temperature profles of the authors. Re, is the Reynolds number based on dis- 
tance from the leading edge, C; is the local skin friction coefficient and St is the local Stanton 
number, all of which are based on the local free stream velocity. 
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profile E l 0  shown, was measured halfway along the plate (station 2 )  and it 
agrees reasonably well with the Reynolds, Kays & Kline ‘wall result.’ The pres- 
sure distribution used for these E profiles is shown in figure 14. 

Although the profiles in figure 11 depart from the zero-pressure-gradient case, 
they still appear to be logarithmic. This could be partially explained by a Rey- 
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nolds analogy type of analysis with the inclusion of a turbulent Prandtl number 
which is dependent on the pressure gradient and perhaps boundary-layer history. 
As opposed to this, one could include the possibility that there still exists a wall 
region in the sense used in the regional similarity analysis, but the effect of the 
local kinematic pressure gradient extends deeper into the ‘thermal layer ’ than 

I I I I 1 I I I I I I I 

- 
Station (2) Station (1) 

I 

I I I I I I I 

0 10 20 30 40 50 
I ! I  1 I I  I 

60 
-3.0 

x inches 

FIUURE 14. Pressure distribution for authors’ E profiles. Pressure coefficients C, 
is based on free stream velocity at station (1). 

it does into the ‘velocity layer’. The profiles (which appear to be logarithmic), 
correlate quite well when plotted according to equation (15), and extensive 
linear regions can be seen on the inverse half-power plot. These are shown in 
figure 12 and, in most cases, the linear regions extend down to the viscous zone, 
(yU,/v z 30). The viscous-zone boundary is shown as a broken line in this figure. 
For these profiles then, perhaps no logarithmic region really exists. 

Using this correlation, the function AO,/O, was plotted according to equation 
(15) and is shown in figure 13. For the profiles measured at  station 1, the experi- 
mental points appear to fall on one unique line or curve, i.e. 

AO, Ug - 
8, - 8, (J 

for the constant Prandtl number used. On first sight, one is tempted to describe 
this correlation by equation (16) since the value of K ~ ( C T )  found is close to the 
Reynolds, Kays & Kline value seen in figure 10. However, since it is probable 
that no logarithmic region exists, the points may be falling on some transition 
function which joins equation (1 6) to equation (17). 

The scattered points shown in figure 13 belong to profiles measured at  station 2, 
which is closer to the leading edge (see figure 14). Also a few of these points 
belong to weaker pressure-gradient tests. It is conjectured that the inverse 
half-power equation is not applicable for these profiles, even though straight 
lines could be fitted to them over some region on the inverse half-power plot. 
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The corresponding velocity profiles failed to exhibit a half-power region and so 
were probably not sufficiently developed to exclude the effects of mean flow 
acceleration and boundary-layer history. By analogy, they may not have been 
sufficiently developed to exclude the effects of mean thermal convection and 
history. On the other hand, half-power regions were observed for the velocity 
profiles at station (1) for the pressure gradient shown in figure 14, and two 
typical ones were shown earlier in the paper (see figure 2). 

These results are at least encouraging and some tentative values for the various 
‘ constants ’ are 

K,(u) w -2.8, K ~ ( ( + )  M 0.50, and AR(u) w 4 for u = 0.71. 

8. Conclusions 
It appears that for adverse pressure-gradient turbulent boundary layers 

which have developed sufficiently, there will exist a region close to the wall 
with a velocity profile which is logarithmic for small values of y and of a half- 
power form for larger values. The blending region between these laws is small 
and the resulting expressions are valid for smooth and possibly for rough walls. 
The theory appears to  be valid for profiles much further from separation than 
was thought probable when using Townsend’s theory. The results cast doubts 
on the usual local similarity concepts. 

Temperature profiles appear to follow a similar correlation to the above except 
that an inverse half-power equation is involved. 

If these correlations are verified by further experiment, they should form a 
good basis for an integral-type analysis for predicting the distribution of Stanton 
number in an adverse pressure gradient. The resulting thermal and momentum 
thicknesses using this velocity- and temperature-profile correlation should be 
quite accurate because of the reasonably large depth of profile described. How- 
ever, the problem will not be completely solved until the outer region of the 
profiles is correlated. 

The authors are indebted to the Australian Institute of Nuclear Science and 
Engineering for financial support of this project. 
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